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Summary 

Theoretical treatment of network formation with partici- 
pation of initiated reactions is to be based on the kinetic (co- 
agulation) theory, because the application of the statistical 
network build-up from monomer units (cascade substitution) can 
be a source of serious deviations. This comparison is demon- 
strated by the degree-of-polymerization distribution obtained 
in the linear living polymerization and the gel point conver- 
sion in the multifunctional polymerization involving a monomer 
with two groups of independent reactivity 

Introduction 

The existing theories of network build-up can be divided 
into two caterories: 

(a) graph-like models not associated with the dimensionality 
of space, 

(b) simulation of network build-up in n-dimensional space. 
The embedment into n-dimensional space simulates more or 

less rigorously spatial correlations manifested particularly 
by cyclization. However, even in the absence or with neglect of 
spatial correlations, there may exist long-range stochastic cor- 
relations (cf. e.g. (I). In this case, using the statistical 
theories the branched and crosslinked structures are generated 
from units at every stage of the crosslinking reaction irrespect- 
ive of the preceding states of the system with respect to the 
connectivity pattern between the units. This approach is rigor- 
ous for equilibrium controlled reactions but does not describe 
adequately the build-up by kinetically controlled reactions (2-4). 

The kinetically controlled network build-up is adequately 
described by coagulation equations of the Smoluchowski type (cf. 
e.g. (5,6)). The reactions controlled by chemical kinetics based 
on the mass action law are described by a special form of the 
coagulation equation in which the kernel of the equation is pro- 
portional to the number of reactive groups of a given type in 
both interacting aggregates (molecules) and by the corresponding 
rate constants characterizing the intensity of bond formation. 
As has been shown (2,8), both the statistical and kinetic method 
give the same results for systems without stochastic correlaticns, 
e.g. for reactions without substitution effect. In step polyad- 
dition reactions with substitution effect, the deviations aris- 
ing from the (incorrect) application of the statistical method 
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were found not to be too serious for systems of experimental 
importance (3,7)�9 Apart from the mathematical complexity of sol- 
ution for a certain polyfunctional system, the kinetic method 
has the disadvantage that it regards the gel as one "molecule" 
and cannot in any way characterize its internal structure. 

However, in a number of systems the crosslinking reaction 
is released by an initiating species which can be present in 
the system or formed in the course of reaction �9 In this contri- 
bution, it is shown on the example of the living polymerization 
that application of the statistical approach may lead to serious 
deviations �9 The linear polymerization will be treated first to 
demonstrate the application of the formalism of the generating 
functions, the use of which is of great advantage in treating 
polyfunctional systems. 

Linear Living Polymerization 

The build-up of linear chains by reacting the monomer M 
with initiator I and reactive ends of polymers Pi of the degrees 
of polymerization i is described by the following scheme 

k I 
M + I ~ PI 

k 

M + PI P~ P2 
�9 (!) 

k 

M + Pk ---C~ Pk+1 

and the following set of kinetic equations 

di/dt = - klmi 

dCl/dt = kimi - kpmc I 

@Ck/dt = kpmCk_ I - kpmc k 

(2) 

where m, i, c , .... , c k are molar concentrations of M, I, P1' 
I 

.... Pk, respectlvely 

This set of differential equations has already been solved (cf. 
e.g. (8)) to obtain the degree-of-polymerization averages as a 
function of kp, k I and monomer consumption. 

Next, the transformation of set (2) to the differential 
equation (4) for the number fraction generating function (gf) 
g(z) is performed by multiplying each equation for c k of set 
(2) by the k-th power of the variable of the gf z k. The gf g(z) 
is defined as 

i 
g(z)~ ciz (3) 

Transformation of Eq. (2) yields 

dg(z) 
dT = rag(z) (z - I) + mg(z) (z - I) + <mzi (4) 
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where < = ki/k P and T = kpt. 
Since 

di/dT = -<mi or /mdT = -(ini)/K, (5) 

the solution for g(z) is obtained in the following form 

<zi0 - (z-1)/< 
g(z) = [ (i/i0) - (i/i0)], (6) 

z-l+ K 

where i0 is the concentration of I at t=0. The g(z) is not nor- 
malized to unity, g(1)= i0- i, since according to the definition 
(3), c i is time dependent and equals i0 -i. The dependence of 
g(z) on l can be transformed to the dependence on m consider- 
ing Eq. (5) , together with the time dependence of monomer con- 
sumption 

dm/dT = - <mi - m(i0- i) (7) 

which yields 

m0 -m = ((<- I)/<) (i0 -i)+(i0/<)in(i0/i) (B) 

For < ~ I, at t=0 c I = ci0 = iQ and 

=i0ze(Z-1) [(m0-m)/i0- I] g(z) 

and the normalized gf 
x (Pn-1) X-le- (Pn -I ) z x 

g(z) = ze (z-l) (Pn-1)=[ (9) 

x x! 

is the gf for the Poisson distribution. 
The degree-of-polymerization averages can be directly ob- 

tained from the moments of g(z). The number average Pn follows 
also from stoichiometric considerations 

Pn = g' (I)/g(I) = (m 0 -m)/(i 0 - i) (10) 

The weight average Pw is derived from the weight fraction gf 
W(z) 

W(z) = zg' (z)/g' (I) (11) 

% = W' (I)= g" (1)/g' (I)+ I (12) 

= (i0/K2) {in2 (i/i0) - 2(<-I)[in(i/i0)+ I-i/i01} 

The derivation of higher averages is straightforward; e.g. Pz 
is derived from Z(z) = zW' (z)/W' (I), Pz = Z'(1). In these ex- 
pressions, X' (z) = 3X(z)/~z and X" (z)= ~2X(z)/~z2. 

Examples of variations of Pw/P n as a function of K, the 
initial ratio i0/m0 and monomer conversion ~M = (m 0 -m)/m 0 are 
given in Table I which shows that the polydispersity is deter- 
mined mainly by K and i~/m 0 . 
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Table 1 Variation of polydispersity Pw/Pn 

aM= 0.1 

~'~ < 0.01 0.1 1.0 I0 i 

i o /m0\ 

0.001 1.18 1.02 1.01 1.01 

0.01 1.30 1.22 1.10 1.09 

0.1 1.35 1.35 1.26 1.11 

0.5 1.37 1.29 1.09 1.01 

C~M = 1.0 

0.01 0.1 1.0 10 

1.01 1.00 1.00 1.00 

1.18 1.02 1.01 1.01 

1.30 1.22 1.10 1.09 

1.34 1.34 1.29 1.25 

Generation of Chains from Polyads 
Statistical generation of chains from monomer units, dyads, 

triads, ... etc. is an alternative way which corresponds to the 
first, second, third,.., etc., order of Markovian statistics. 
There is no reason for the use of this approach in generating 
linear chains, but the method would be of interest for non-lin- 
ear polyfunctional systems, because it could be used also for 
the description of the gel. The purpose of this section is to 
compare the exact kinetic solution with the approximate gener- 
ation from polyads. In this approach, the DP distribution is 
generated from polyads composed of k monomer units and from j- 
-mers (j ~ k) the concentrations of which are determined by k + 2 
kinetic differential equations. For example, if the build-up is 
executed from triads, the concentrations c of the following 
species are calculated 

[] Cl ~ c122 
c 2 oligomers ~ - ~  c222 triads, 
c 3 ~[VFTI c221 

where [] means the polymer of DP I, I~ and [] the terminal 
and inner units of the chain, respectively. The probability of 
finding, e.g., a pentamer is proportional to the product c122 • 
c222c221, where c122 = c22 I. If one cuts off from the distri- 
bution the oligomers (Cl-C 3 of which has been obtained by the 
exact solution), the renormalized distribution of r-mers (r > k) 
is a function of a single parameter p = c222/(c222 + c122), and 
the distribution function is a truncated most probable distri- 
bution described, e.g., by the number fraction gf 

(1-p)z k+l N(z) = ~pX-1(1 - p)zX+k - 
(I - pz) (13) 

x 

The whole DP distribution includes also the r-mers, r=I-3, and 
it is easy to show that the resulting Pw/~n converges to 2 for 
p--~1, which is characteristic of the most probable distribution 
irrespective of k. 

These results shows that the application of the higher- 
order Markovian statistics in the generation of initiated poly- 
mer structures is expected to have only a limited success, par- 
ticularly at high Pn- Moreover, the application of higher order 
Markovian statistics to polyfunctional systems, i.e., a build- 
-up from tree-like clusters, meets with difficulties, because 
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the formation of one bond in an f-functional system affects the 
state of up to 2f clusters in the case of the first-neighbour 
effect, 2f(f-1) in the case of the second-nearest neghbour ef- 
fect, etc. The direct kinetic generation is therefore preferred 
wherever possible. 

Non-linear Polymerization 

The network build-up from monomers having more than one 
polymerizable group can be described by solving the correspond- 
ing kinetic scheme. However, the inapplicability of the kinetic 
approach to the characterization of the gel structure has al- 
ready been mentioned. 

A considerable simplification can be achieved if the re- 
activity of functional groups is independent which is often the 
case. It has been suggested (1,9), that in the case of an indepen- 
dent reactivity of groups in the polyfunctional monomer there 
does not exist any stochastic correlation between them. In this 
case, the polyfunctionai living polymerization can be treated 
as follows (the example is given for a monomer with two func c 
tional groups) 

(a) the connections between the independent groups are cut 
and points of cuts are labelled by label a 

T M 
- - + 2  I 

M a 

(b) t h e  i n i t i a t e d  p o l y m e r i z a t i o n  i s  c a r r i e d  o u t  u s i n g  t h e  
k i n e t i c  m e t h o d  

M I --~M) 

I + n 1 > I n-1 ! 
a a a (distribution) 

(c) the labelled points are combined at random to reform 
the previously severed connections M 

I M M  .... M I .... M 

]7 
a a a I-M-M . . . .  M-M.. 

i 

(distribution) (distribution) 

For this type of generation, the gf g(z) is directly appli- 
cable with a small modification. Some of the groups in the poly- 
mer also include unreacted groups, so that M--a units (fraction 
m) should also be included. Instead of g(z), one has to consider 
the gf G(z) 

G(z) = g(z) + mz (14) 

The variable z is now related not to counting monomer units in 
the polymer, but to bonds issuing to the next generation. There- 
fore, G(z) becomes a gf for the number of bonds issuing from a 
(kinetically generated) chain in the root to the first gener- 
ation per chain in the root. Thus, by replacing formally z for 
Za, one obtains the gf G1(z a) for the number of bonds issuing 
from a unit in generation g > 0 

G I (Za) = G'(za)/G' (I) = (g' (z a) +m)/(g' (I) +m) (15) 
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and the gel point condition 

G~ (I) = g" (1)/(g' (I) +m) = I (16) 

from which the critical conversion can be calculated as a func- 
tion of < and i0/m 0 (Table 2) 

For the sake of comparison, the same system is treated stat- 
istically using the cascade generation. Because the two poly- 
merizable groups are independent in their reactivity, the re- 
acted and unreacted groups are placed in generation zero, and 
their distribution with respect to the number and type of is- 
suing bonds is described by the pgf f0 (z) ; the pgf correspond- 
ing to the monomer with two groups F0 (z) is obtained by convol- 
ution F0 (z) = f] (z). One has to distinguish between directions 
of bonds leading to the bound initiating species (e.g. left di- 
rection) and to the living chain end (right direction). This 
situation is illustrated by the following scheme 

% 
. . . .  _ Z t~/Zr 

Thus, 

F0 (Z) = f~ (z) = [(I-~M)+~M(@IZI + @MZs (@i+@MZr)] 2 (17) 

where z and z are the pgf variables referring to the left 
.r 

branch s by initiator) and right branch (terminated 
by the living end), respectively, and z I refers to the initiating 
species; ~I and #M = I -~I are probabilities that a bond from 
a monomer unit leads to the initiator species in the left branch 
(living end in the right branch) and another monomer unit, re- 
spectively, 

@I = (i 0 - i)/(m 0 - m) 

It can be shown that, since the initiating species is monofunc- 
tionali z I can be dropped (z I = I), and z i = Zr, which yields 

F0 (z) = [I - ~M + ~M(@I + @M z)212 (18) 

The pgf F I for the number of bonds issuing from a unit on gener- 
ation g > 0 is obtained form F 0 by differentiation 

FI(Z) = (~i + ~MZ) [I -~M+~M(~I + ~MZ) 2 ] , (19) 

and the gel point condition is given by 

F~ (I) = ~S(1 + 2~M) = I (20) 

The critical conversions calculated by the rigorous kinetic 
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method (Eq. (16) and approximate statistical method Eq. (20)) are 
compared in Table 2. 

Table 2 Gel point conversion in the living polymerization of 
a monomer with two polymerizable groups of independent and equal 
reactivity 

K 0.01 0.1 1.0 10 
i0/m 0 K S K S K S K S 

0.001 0.020 0.015 0.030 0.022 0.032 0.023 0.032 0.023 
0.01 0.046 0.036 0.083 0.063 0.100 0.076 0.105 0.076 
0.1 0.102 0.081 0.204 0.168 0.316 0.257 0.332 0.279 
0.5 0.177 0.146 0.375 0.324 0.707 0.643 0.864 0.809 

K - kinetic method, S - statistical (cascade) method 

As expected, the gel point conversion calculated rigorously 
is higher by 20-25% compared to that calculated statistically 
due to a narrower degree-of-polymerization distribution. Such 
difference is rather serious and may completely distort the ef- 
fect of unequal or dependent reactivities, if it is operative. 
The application of a combination of the kinetic and statistical 
method is, therefore, necessary. 
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